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Symmetries and constants of motion for new AKNS hierarchies 

Yi Cheng and Yi-shen Lit 
Department of Mathematics, UMIST, PO Box 88, Manchester M60 lQD, UK 

Received 16 July 1986 

Abstract. Two sets of infinite number of symmetries, their Lie algebra properties and 
constants of motion for a class of non-linear evolution equations associated with non- 
isospectral deformations of the AKNS spectral problem are constructed. 

1. Introduction 

In Li and Zhu (1986), they investigated the symmetries for a class of integrable 
non-linear evolution equations (NEE)  

ut = K~ = 4 k o  1=0,1,2,  . . .  (1.1) 

where U = (s), KO = (::) and 4 is an operator 

1 -2rD-'r D-2rD-lq 
1 -D+2qD- ' r  

D - ~ D  = DD-~  = 1. 

4 =:( 
D = a/ax 

They constructed two sets of infinite number of symmetries in terms of the operator 
4 in (1.2) 

K, = q5"Ko (1.3) 

(1.4) 71, = 4 (ItKI-,  + a,) = ItK,+l- + U, = xKO a, = $"a0 

and showed that a graded infinite-dimensional Lie algebra exists for these symmetries 

The symmetries of (1.1) is an algebraic expression T ( U )  that satisfies the following 
linearised equations: 

7, = K ~ [ T ]  (1.8) 
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where K { [ T ]  = (d /d&)KI(u  + E T ) [ , , , ,  is the Gateaux derivative of K1 in the direction of 
T and the Lie bracket between any two symmetries is defined as follows: 

[ A ,  B ] = A ' [ B ] - B ' [ A ] .  (1.9) 

The equations (1.1) are well known to be the integrable NEE associated with the 
isospectral deformations of the AKNS spectral problem (Ablowitz et a1 1974) 

cpx = Mcp M = ( r ipi2) cp = (;J (1.10) 

Like most other integrable NEE, (1.1) can be expressed as the Hamiltonian systems 
and their infinite number of symmetries K ,  (called classical ones) yield the constants 
of motion which are in involution through Noether's theorem (Magri 1980), namely 
there exist potentials I,, such that 

O grad I ,  = K ,  e=( O ') 
-1 0 

(1.11) 

I"t = 0 { I ,  I , }  = (grad I,, O grad I , )  = ( K ,  OK,) = 0. (1.12) 

But for symmetries of ~ f ,  in (1.4) (called new ones), there no longer exist corresponding 
constants of motion. One reason is that the symmetry transformations associated with 
~ f ,  change the actions of NEE (1.1) and are non-Noether's (Cheng and Li 1986). 

The other interesting fact is that for the hierarchy of NEE U, = T  (generated by 
symmetry T ) ,  when T = K,, the equations U, = K ,  actually belong to the class of NEE 

(1.1). However, when T = T :  the equations 

(1.13) 

are nothing but the NEE corresponding to the non-isospectral deformations of the AKNS 

spectral problem (l.lO), namely they are equivalent to the Lax formulations with the 
same spectral problem (1.10) in the usual isospectral case, such that its spectrum 6 be 
no longer invariant but 6, = 5". This fact has been firstly pointed out by Li and Zhu 
(1986). The NEE (1.13) are not usual Hamiltonian (except n = O ) ,  but they can be 
solved by the inverse scattering transform (Calogero and Degasperis 1978, Li 1981). 
From a mathematical point of view, they enlarge classes of solvable NEE. Physically, 
they can be regarded as the dynamical systems with soliton equations (corresponding 
to the dispersion relations a([) = lt5""-') plus extra terms (U,,). Our interest in this 
paper is to discuss the symmetry structure and constants of motion for such N E E  (1.13). 
We shall see that they have different features to the Hamiltonian systems (1.1). Before 
entering into the main discussions, we shall summarise the notation and some notions. 

I U, = 7 ,  

2. Basic notation and notions 

Let S be a space of the vector U = such that U,, u2 are sufficiently smooth functions 

of x and t.  They and any possible derivative vanish as fast as one wants for 1x1 + 03. 

S* is the dual space of S. For a E S* and U E S (au) denotes the application of the 
linear functional given by cy to U. 4 in (1.2) is the operator from S to S and with 
respect to this duality is denoted by 4*: S * +  S*.  It satisfies 46 = O4*, where 8 in 
(1.11) is an operator from S* to S and is obviously impletic (Magri 1980, Fuchssteiner 

(3 
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and Fokas 1981). The further properties for 4 are that 4 is a hereditary symmetry 
and a strong symmetry for NEE (1.1) (see Li and Zhu 1986), i.e. 

4’[4uIu- 4’[4UlU = 4 ( 4 ’ [ u I u -  4 ’ [ U l U )  

4’[K/1 = [KI41 
(2.1) 

(2.2) 1 = 0, 1,2, . . . 

for any U, U E S, the bracket for two operators means [ FG] = FG - GF. From equations 
(2.1) and (2.2), we have the following lemma. 

Lemma 1 .  

(4k)’[K11 = [KI 4k1 
( 4 k ) ’ [ 7 ! , ] = [ 7 f : ~ k ] + k 4 “ + k - 1  

k, 1 = 0, 1,2 . . . 

k, n = 0, 1,2 . . , 

Proof (2.3). 

Proof (2.4). 
For k = 1, n = 0. It has been proved by Li and Zhu (1986) that 

4’[761=[d41+I 
where I is the unit operator. So, by means of (2.1), we have the following. 

For k = 1, n > 0. By acting on any U E S 

(4’[f!,l -[7;41)u = 4”u- 72[4ul+ 4(7:[uI) 
= 4 ’ [ 4 . , - l l U  - 4’[4Ul.fi-1- 47;-1[4ul+ 4 ( 4 ’ [ U l T ! , - l )  + 427:-1[ul 
= 4((4’[~;-ll - [ L 1 4 l ) u ) .  

Hence #’[T!,]= [7 ;4]++” .  
For k>l, n>O 

k 

((bk)’[7!,]= 2 4k-’4‘[7;]4J-1 
J - 1  

= [ 7: 4 k ]  + k4“+k-1. 
Thus, we complete our proofs. 

Here and in the following, for simplicity, we assume 7 = 7h+1 and consider the following 
N E E  

I 
U, = 7 7 = fN+l N = - 1 , 0 , 1 , 2  , . . .  ( 2 . 9  
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where U, indicates the total differentiation with respect to t .  So, for any functional 
F (  U, t ) ,  F, = aF/at  + F’[T]  and the definitions of the symmetry f and strong symmetry 
C$ for (2.5) are formally the same as usual (e.g. see Li and Zhu 1986), namely 

f, = T’[ T ]  

6, = [ T ’ & ] .  

If f and C$ are explicitly dependent on t ,  then (2.6) and (2.7) are equivalent to 

a.r /a t  = [ T ? ]  (2.8) 

This notation means that the strong symmetry 4 generates the symmetries of (2.5), i.e. 
if 7 is a symmetry of (2.5), then 4f is also a symmetry. 

We also have the following corollary. 

(2.10) 

(2.11) 

(2.12) 

The corollary can be proved from the Lie brackets ( l S ) ,  (1.6) and lemma 1.  

3. Symmetries for NEE (2.5) 

In this section, we shall construct a strong symmetry for (2.5) and then by means of 
strong symmetry, we can obtain two sets of infinite number of symmetries. Finally we 
give the Lie brackets among these symmetries. 

Theorem 1.  Let 

f(5, t ) =  [ ( 1 +  N g N ) - ’ ” .  (3.1) 
Then C$=f(d, t )  is a strong symmetry for NEE (2.5), i.e. it satisfies (2.7) 

Boo$ One notices that the function f(5, t )  satisfies 

(5- t N=-1 

(e/at)f(t, t )  = -f”’ (3.3) 
where the coefficients f i + N k  satisfy 

fl = 1 

( f i + N k )  t -k ( 1 + N( - 1 ) ) f l +  N ( k - 1 )  = 0 
(3.4) 

According to these properties of f(5, t ) ,  one can check that our operator satisfies (2.7). 
k = l , 2 , 3  ,.... 
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Theorem 2. Let KO = KO,  Yo = r - K ,  and 

K, = & n K o  

7, = 4"?0 

n = 1,2,3,  . . . 
- 

n = 1,2,3,  . . . 
then E,, and 7, are symmetries for NEE (2.5). 

Prooj As we know, the strong symmetry 6 for (2.5) generates its symmetries, so what 
we need to d o  is just to prove that 17, and To are symmetries. It is obvious, from (2.10), 
that KO is a symmetry, while for To, one can check from (2.10) and (2 .11)  that 

fa, = 7, - K I ,  = 7'[ r] + l K l + N  - T'[ K,] - lKI+ 

= ri[f0]. 

Theorem 3. For two sets of symmetries (3.5) and (3.6), there exists a graded infinite- 
dimensional Lie algebra 

[K,K,] = 0 (3.7) 

[ K m f n I  = m K + , + N  (3.8) 

?m 1 = ( - ) ?m + n + N .  (3.9) 

Before we prove this theorem, we need to prove the following lemma. 

Lemma 2. 

Prooj For N 3  1, from (3.2) we have 

Similarly, 6" can also be expressed as the series of 4 in the form 

6" = a,+'. 

So En and 7, have the following forms: 

Kn = c a,K, 

f n  = E  a j (~L+ I+ j - - /+ j ) .  

According to lemma 1, we have 

6'[Kn 1 = 1 c fi+ N k a ] ( 4  1+''4k ) ' [K,  1 
k~ 

(3.10) 

(3.11) 

(3.12) 
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and 

$'[ ? n l  = 1 1 f l +  NkaJ (4  TL+l+J - KI+j 1 
k i  

= C C f i + N k a J { [ p ' & + l + J -  K { + J c $ l + N k ] + ( I +  Nk)4ktN(k+1)+' 1 

= [f:, il+ 6, c (1 + N k ) f l + N k 4  

k J  

l + N ( k + l )  

k 

a 
= [ f ' n  41 - 6",f(4. t )  

- - [?:,$I+ 4 n + N + l  

The remains (in the cases of N = -1 and N = 0) can be proved similarly. 
We now prove theorem 3. 

Proof (3.7). Notice that K,, are combinations of K , ,  so the commutability among K ,  
implies the commutability among E,,. 

Proof (3.8). In accordance with lemma 2, we have the following. 
For m =0,  n = O  

[ Ro f o ]  = [KO T L + ~ -  K , ]  = 0. 

For m > 0 ,  n = O  

[ R, To] = K L[ f O ]  - .?A[ E,] 
= ~'[T0]K,~1-~~[~K,_1]+~K~~l[70] 
= -&f~[R,_l]+~"+~K,_,+~K~-l[fo] 
= & ( [ G I  ?OI)+Km+N 

- 
= mK,+,. 

For m > 0 ,  n>O 

[ K , f , ] =  Kk[f,]-?;[K,] 
= K ; [ i ? , - , ] -  ~ b ' n _ , [ K , ] - i ' [ K , ] ? , - ,  

= i( [ K m  fn - 1 I 
= 4" ([ R m  701) 

= mKm+n+N* 
- 

Proof (3.9). Similarly, we have the following. 
For m =0,  n = O  

[ To To] = 0. 

[ i m f O ] =  ~f:,-1[?03+~'[?0]7,_,-f~[~?.,_,] 

= 6?~- l [?o ] -6?~[?m- l ]+  & N + l ? m - l  

= 6 ( [ ? m - 1  ?0I)+ ? m + N  

For m > 0 ,  n = O  
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For m > 0 ,  n > O  

4. Constants of motion 

For NEE (2.5), the constant of motion f means that U satisfies (2.5) and implies f, = 0. 

Theorem 4. Define 

c C:(-t)"-kIk N = - 1  [ k 1 0  

f,= e x p [ - ( n + l ) t ] ~  N=O (4.1) 

N s l  

for n = 0, 1, 2, , . . , where I,, are constants of motion for NEE (1.1) which were defined 
in (1.11). ~ f : = n ! / k ! ( n - k ) !  and bn+NI are coefficients of 

Then, f, are constants of motion for NEE (2.5) which are in involution. 

Prooj From the lemma in Cheng and Li (1986), we know that when U, = T,  I,, in (1.1 1) 
satisfy 

I , , , = I ~ [ T ] = ( n +  N+l)I, ,+N. (4.3) 

So, for N = -1 and N = 0, it can be checked that r,, defined in (4.1) are constants of 
motion. 

For N 2 1, one notices that the coefficients bn+NI in (4.2) satisfy 

(4.4) 

This implies that r,, = 0 if U, = 7: 
On the other hand, f,, are combinations of I,, in each case. Thus the commutability 

of I ,  under the meaning of the Poisson brackets (1.12) implies that f,, are in involution 
with the same meaning 

{ 7 ,  T,,} = (grad fm, 6 grad f,,) = 0. (4.5) 

So, we complete our proof of theorem 4. 
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In accordance with the inverse scattering transform theories of (l.lO), we finally give 
the expressions for the constants of motion in in terms of scattering data. We assume 
here r = -q* to be an example, the asterisk meaning the complex conjugate. From 
the paper of Newel1 (1980), Z, have the following expressions 

(4.6) 

where t k  and 5; are discrete eigenvalues and a(()  is the transmission coefficient of 
the spectral problem (1.10). By means of the definition of the function f and theorem 
4, we have 

5. Concluding remarks 

In this paper, we have investigated the symmetries, their Lie algebra properties and 
constants of motion for N E E  (2.5) which are associated with non-isospectral deforma- 
tions of the AKNS spectral problem (1.10) (6, = tN+’) and which can be solved by 
inverse scattering transforms. We note that for NEE ( 1 . 1 )  associated with isospectral 
deformations of (l.lO), the recursion operator 4 is a strong symmetry, i.e. it satisfies 
(2.2), or equivalently 

4, =[K141 if U, = K , .  

But for NEE (2.5), 4 satisfies (2.4), or (with k = 1 ,  n = N +  1 and 7 = T L + ~  in (2.4)) 

4, = [ 7‘41 + 4 N + l  if U, = 7. 

It would be preferable to replace the time variant parameter 5 (5, = g N + ’ )  by an 
invariant one f _ = f ( S ,  t ) =  5(1+Nt,$N)-”N(g =df/at+(df/dg)& = 0 )  and then 
naturally consider 4 =f( 4, t )  as a strong symmetry for N E E  (2.5). We proved this idea 
in § 3 and, what is more, we found that the expressions of constants of motion T,, in 
terms of scattering data in (4.7) are agreeable to our replacement, namely (4.7) can 
be obtained by using f(5, t )  to replace 6, etc, in (4.6). 

We also note that for N = - 1 ,  we have 6 grad rn = E,,. This means that symmetries 
En yield the constants of motion. But for N 3 0, unlike most integrable Hamiltonian 
systems, symmetries Kn no longer yield constants of motion for NEE ( 2 . 5 ) ,  although 
they still correspond to gradient functions through the impletic operator e, while 
8 grad 7, are not symmetries. 
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